
Where GPT Behavior Comes From
Four Philosophers, a linguistic stack, and a practical map of
deployed systems
Michael Stoyanovich
michael@mstoyanovich.com
Version 1.3.1 – December 2025

Disclaimer
This paper is intended for informational and educational purposes only. The views and
analyses presented - particularly those related to ethics, policy, and AI system design - reflect
the author’s interpretations and do not constitute legal, regulatory, or professional advice.
Readers are encouraged to critically assess the content and consult appropriate experts or
authorities before applying any concepts discussed herein. The author assumes no liability for
any decisions or actions taken on the basis of this work.

Abstract1

When a GPT hallucinates, where in the stack did things go wrong? LLM commentary often
collapses into a binary: either the system “understands,” or it is “only” next-token prediction.
That framing hides where behavior actually comes from in deployed GPT systems. This essay
offers a pragmatic map that links a four-philosophers lens (Wittgenstein, Lewis, Dennett, and
Nagel) to a linguistics stack, and then maps both onto a plain-text GPT system.2 The map
separates the system into three interdependent lanes: Control (the instruction layer and how a
request is packaged), Core (the model, which predicts what text is likely to come next given
what it can see), and Outside-core (the surrounding system components: tokenization,
decoding, context handling, policy enforcement, and optional tools or retrieval). The point is
practical, not metaphysical: to attribute strengths and failure modes to the right place, and to
put controls where they actually improve reliability and auditability. Speech acts—asserting,
requesting, committing, refusing, hedging—are the bridge between philosophy, linguistics,
and system design. The mapping is aimed at policy, product, and governance readers who
need a clearer frame for evaluation and accountability. A running example is used
throughout: a compliance workflow that summarizes guidance with citations and a freshness
check.

Guide for policy and governance readers
This essay is a conceptual map intended to support evaluation and governance decisions.
This analysis assumes a text-only interface; multimodal systems largely expand Outside-
core with additional I/O pipelines and grounding mechanisms.
 The argument does not require machine learning (ML) fluency; technical terms are optional

1Author’s note: The author is not a professional linguist, academic philosopher, or machine learning (ML)
researcher. This essay offers a pragmatic synthesis developed for interpretive clarity in policy and
governance contexts, drawing on secondary and primary sources where possible. The goal is usability and
intellectual hygiene, not disciplinary novelty. This is a practitioner-oriented synthesis, not a new theory of
meaning or mind.

2This essay assumes a text-only interface; multimodal deployments are briefly noted in Appendix D.

detail.

 Start with Sections 3, 5, and 6 (lanes, speech acts, and implications).
 Use the compressed table (end of section 4) as a checklist: identify the linguistic

issue, then locate whether it is Control, Core, or Outside-core.
 When a term slows the read, jump to Appendix B (plain-language notes), Appendix

C (glossary), or Appendix D (linguistics stack), then return.

Figure 1. The three lanes of a deployed GPT system
Control

 Instructions and
packaging

 Roles
(system/developer/u
ser)

 Templates,
constraints,
formatting

Core

 The model itself
 Predicts what text

comes next
 Learns patterns from

training data

Outside-core

 Everything around
the model

 Tokenization,
decoding, context
handling

 Policy enforcement,
tools/retrieval,
logging

1. Why “Does it understand?” is misleading
The question “does the model really understand?” is not meaningless; it is simply
overworked. In practice it serves as a rhetorical lever: inflating systems into agents (“as if”
they had humanlike agency) or deflating them into stochastic party tricks. Neither posture
helps when a concrete task must be executed, evaluated, governed, and—crucially—trusted
in context.

Start with the system, not the slogan. A deployed GPT is an end-to-end system: (i)
instructions that frame the task and set priorities (Control), (ii) the model that predicts likely
next text from the context it can see (Core), and (iii) the deployment layer that turns that into
a usable product (Outside-core). The rest of this essay treats these as three interdependent
lanes. Linguistics provides a matching stack on the language side—discourse, pragmatics,
speech acts, syntax, lexicon, and more. The four philosophers then function as guardrails:
they help keep claims about meaning, commitment, competence, and experience in bounds.
This is not a claim about what GPTs are in any ultimate sense; it is a practical frame for
locating where behavior comes from in deployed systems, and where policy and controls can
actually act.

2. Four lenses that limit over-claiming
The framework used here is not deployed as a set of theses to be defended, but as a set of
constraints on what can responsibly be inferred from GPT behavior.

Wittgenstein anchors meaning in use and rule-governed practice. On this view, the relevant
question is not whether a string of text “contains” meaning, but whether the output functions
correctly within a language-game: a task with norms, roles, stakes, and standards of success.

Lewis emphasizes convention, coordination, and the management of common ground—what

is treated as settled, what is presupposed, what is at issue, what has been committed to, and
what can be revised. This lens foregrounds conversational bookkeeping: the ongoing update
of commitments that helps keep human–GPT discourse coherent.

Dennett offers a pragmatic discipline for interpreting complex behavior. The intentional
stance can be useful as a predictive shortcut—talking as if the system “believes” or “wants”
something often improves short-term forecasting of outputs—by tracking what the human
interlocutor expects the GPT to do next. But the stance becomes a trap when it is treated as an
ontological promotion—that is, when a predictive convenience is mistaken for a claim about
the system’s real nature. Competence does not entail comprehension; a fluent explanation by
the GPT does not mean it has stable understanding of what it is saying.

Nagel provides the boundary condition. A system can generate first-person-like discourse
without that implying subjective experience—without anything it is like to be that system.
More generally: fluent talk about the world is not itself a tether to the world. The lens is less
an accusation than a reminder: language can simulate presence without providing it. There is
no “there, there” that the system itself gives access to. Nothing in the system warrants the
claim that there is anything it is like to be a GPT.
These lenses reappear in the discussion of speech acts, evaluation, and governance, where the
mapping is applied as an interpretive and operational discipline.

Figure 2. Three lane visual of a deployed GPT system.

3. Three lanes: Control, Core, Outside-core
A common mistake is to talk about “the model” as if it were the whole product. In practice,
what people use is a deployed GPT system built from three interdependent lanes:

1. Control: the instruction layer—system/developer/user messages, templates,
delimiters, and formatting rules. Control sets the game: what is being asked, what
constraints apply, and what counts as an acceptable answer.

2. Core: the model itself. Although it is trained to predict text, the behavior that falls out
of that objective can include surprisingly capable patterns. Given the text it can see, it
predicts what text is most likely to come next. This is where most language
competence comes from (grammar, phrasing, patterns of explanation), but it is not a
built-in fact checker.

3. Outside-core: the deployment layer around the model—tokenization, decoding
settings, context-window handling (what is kept vs dropped), policy enforcement, and
any retrieval/tools. In production, this layer often decides whether answers are safe,
structured, sourced, and consistent.

This separation matters because many behaviors that look “cognitive” are actually properties
of the surrounding system components (e.g. stale retrieval): decoding settings that change
confidence and verbosity; context truncation that creates contradictions; and retrieval/tools
that change what information is available at answer time.

Some deployments blur the boundaries. Retrieval or tool calls can be triggered automatically,
and some products add extra inference-time steps. Even then, the lanes remain a useful
diagnostic: is a behavior coming from the model, from the instructions, or from the
deployment layer?

4. Mapping linguistics onto GPT systems
This section overlays two checklists—the linguistics stack and the three lanes—so a reader
can locate where a problem is likely introduced. With the system lanes in view, the next step
is to lay a linguistics stack over them: to see where a plain-text GPT has a natural mapping,
and where it does not.

A plain-text GPT system does not map to all layers of linguistics. Phonetics and phonology
have no appropriate mapping in a purely textual system. Likewise, psycholinguistics and
neurolinguistics do not map literally: the substrate is not a human cognitive process, nor a
brain.

But many layers do map pragmatically:

 Orthography/graphology maps to outside-core I/O and learned conventions in the
core, with control shaping formatting norms.

 Morphology maps weakly via subword tokenization; token boundaries can
resemble morphemes, but the match is incidental and imperfect.

 Lexicon, syntax, and compositional semantics map primarily to core behavior,
where distributed representations support structure-sensitive generation. Control
and outside-core constraints can shape the form of that generation without changing
the underlying learned structure.

 Discourse maps to attention over a finite context window, while outside-core
context management imposes hard limits on continuity and coherence.

 Pragmatics spans all three lanes: control supplies intent cues and priorities; the core
reproduces pragmatic patterns unevenly; outside-core policy enforcement can
override stance.

Two distinctions clarify “reference,” which is often treated as a single problem:

Deixis/indexicals (here, now, this, that) can often be stabilized by spelling out the context in
text—what “this” refers to, what “here” means, and which time “now” is anchored to. For
example, instead of “fix this,” write “fix the second paragraph under ‘Governance’,” or
instead of “what’s happening now?” write “as of December 2025, what is the current status of
X?” When it fails, the reason is usually simple: the cue is missing, ambiguous, or has been
dropped from the context the system can see. The system then fills the gap with a plausible
referent, which can be wrong even when the prose sounds confident.
Empirical verification—being tethered to what is actually true—is not intrinsic to the core
model. A GPT can produce a confident answer that reads like a policy memo and still be
wrong, outdated, or quietly fabricated. A useful rule of thumb: if the output must be correct,
not merely coherent, verification cannot be optional. When verification is required, it typically
has to be provided outside-core: retrieval from approved repositories, citations tied to specific
passages, freshness checks for time-sensitive topics, and human review when the
consequences are real (benefits eligibility, compliance posture, legal interpretation).
In table terms: deixis is often fixable in Control and Outside-core (by naming exactly what
“this/that/here/now” points to). Empirical verification lives almost entirely in Outside-core
—because it requires a pipeline of sources and checks rather than language fluency.
In the running example, “cite sources” is a Control rule, while the choice of what to retrieve
(and what to ignore) sits in Outside-core; the model’s fluency can hide that mismatch.
A recurrent failure shows up at the seams between lanes. Control may demand “cite sources”
or “don’t guess,” while Outside-core retrieval returns material that is partial, conflicting, or
stale. The core can then produce a confident answer that stitches the pieces together anyway.
For example, a prompt asks for the latest policy position, but retrieval returns an older memo;
unless the Outside-core layer enforces a freshness check, the system may blend the older
memo into a “current” answer. The issue is less “bad reasoning” than a mismatch between
the speech act being demanded (a grounded assertion) and the evidence actually available.
Mitigations are mostly architectural rather than rhetorical: bind claims to retrieved passages;
check freshness and authority; require uncertainty marking when evidence is thin; and fall
back to clarification or refusal when the system cannot meet the requested act.

What follows is the condensed diagnostic checklist version of that overlay.

How to read the mapping in the table below
Columns are system lanes (Control, Core, Outside-core); rows are linguistic layers; tags index

the four philosophers.
Use the table as a checklist when diagnosing behavior: locate the linguistic phenomenon, then
ask which lane is responsible. Where there is no appropriate plain-text GPT mapping, the
layer is preserved and marked “NO MAPPING.” Plain-language technical notes appear in
Appendix B; a glossary is provided in Appendix C.
Tags: W = Wittgenstein, L = Lewis, D = Dennett, N = Nagel (limit).

The table is not meant to be memorized; it is a diagnostic checklist.

Running example (policy)
A compliance team asks an internal GPT assistant: “Summarize the new guidance and tell us
what to change in our policy. Cite sources and flag uncertainty.” The system replies
confidently, but it leans on an outdated secondary source and misses a key caveat in the
primary guidance.

Compressed table view (key rows):
 Walkthrough (one row):

- Pick a row—for example, Deixis/indexicals (this/that/here/now). Read across.
 Control: did the prompt pin the reference (“this” = which document/section/date)?
 Core: can the model resolve it from what it can see, or does it guess a referent?
 Outside-core: did the system inject missing context (file name, time, tool output), or

did truncation drop it?
 Diagnostic move: if the answer points to the wrong “this,” treat it as a reference failure,

not “bad reasoning.”
 Governance move: require explicit anchors (“this = …”) in high-stakes workflows, and

log what context was provided.

Linguistics layer
(tags)

CONTROL
(message hierarchy)

CORE
(transformer)

OUTSIDE-core
(runtime + I/O)

Deixis / Indexicals

[W,L]

pin
“here/now/this/that”
via explicit context (“In
this doc…”, “In
2025…”)

resolves indexicals via
textual cues in-
window; brittle when
cues are missing

context injection (time,
locale, tool outputs)
can stabilize reference

Empirical
verification / World-
tethering

[N(LIMIT),W,L,D]

require sources,
quoting, and “don’t
guess” rules

no inherent truth-
check; plausible
continuations absent
grounding

tools/RAG/browsing
(if present) provide
external checks;
otherwise none

Discourse / Text
linguistics

[L]

delimiting/quoting/
scope defines
“context”

attention over context
window supports
coherence (within
window)

context mgmt.:
truncation, memory
injection,
summarization; KV-
cache/runtime
constraints

Pragmatics (speaker
meaning)

intent cues, priority
rules, constraints

pragmatics-ish
patterns (inconsistent)

policy/safety layers
can override stance;

[W,L]
tool gating

Speech acts
(assert/request/comm
it/refuse/hedge)

[W,L]

explicit act-shaping:
“summarize”, “argue”,
“refuse if…”, “ask
clarifying questions”

act-shaped
continuations
(asserting, hedging,
complying) without
truth guarantee

policy
enforcement/refusals;
constrained output
channels
(JSON/schema); tool
calls as “acts”

Syntax (structure)

[D]

formatting can make
structure easier/harder
(lists, code blocks, etc.)

structure-sensitive
behavior via
attention/position
(emergent)

constrained decoding
can enforce structure
even if core would
drift

Phonology / Phonetics

[—]

NO MAPPING (plain
text)

NO MAPPING (plain
text)

NO MAPPING (plain
text)

5. Speech acts as the operational hinge
If a single linguistic concept deserves pride of place in an LLM interpretation map, it is
speech acts: asserting, requesting, committing, refusing, hedging.

Speech acts capture what an utterance does in interaction. That matters because GPT use is
already speech act structured—often explicitly so. Instructions such as “summarize,”
“answer,” “refuse if unsafe,” “ask clarifying questions,” “cite sources,” and “output JSON”
are not decorative; they are act-shaping constraints. They specify what kind of move the
system is being asked (or allowed) to make.

Speech acts are used here as interaction categories—not as a claim that the system has
intentions. They describe what an utterance does in a workflow (assert, refuse, ask), which is
exactly what governance can constrain and audit.

In the running example, “Summarize…” is a request; “cite sources” and “flag uncertainty”
constrain what counts as an acceptable assertion.

This is where the four lenses converge cleanly:

 Wittgenstein: a response is a move in a language-game; correctness is measured by
fit to the practice.

 Lewis: moves update commitments; coherence is scorekeeping across turns.

 Dennett: act-shaped fluency tempts intentional attribution; the stance can predict
behavior, but should not be mistaken for a warrant of understanding.

 Nagel: speech-act performance does not entail subjective experience; it is functional
participation, not lived perspective.

The pragmatic payoff is immediate: reliability improves when the system is constrained to
make the right kinds of moves—particularly when assertions are bound to sources,
uncertainty marking is required, and inquiry is mandated when context is missing.

6. Implications for evaluation, reliability, and governance
The point of the framework is not to win an argument about what GPTs “really are,” but to
change what teams build and how they govern it. With that in view, the mapping distills into
a small set of moves that materially improve reliability, auditability, and civil trust.
For product teams: governance moves that actually change outcomes

 Bind high-stakes assertions to evidence. Require that factual claims be tied to
retrieved passages (or approved repositories), not just “sounds right” fluency.

 Enforce reference anchoring (“this/that/here/now”). In high-stakes workflows, require
explicit anchors (“this = …”) and log what context was provided.

 Treat freshness and authority as first-class controls. Add freshness checks for time-
sensitive topics and prefer authoritative sources; when evidence is stale or thin, force
clarification, uncertainty marking, or refusal.

 Log the instruction stack. Preserve the system/developer/user instruction layers and
active policies that shaped the act being performed.

 Log what the system could see. Snapshot the context window inputs (including
truncation, summaries, and memory inserts) so outputs can be audited and
reproduced.

 Govern memory like a system of record. Define what is summarized vs retained,
who/what can write to memory, and how memory is versioned and reviewed after
changes.

Many production failures occur at the seams between Control and Outside-core: Control
demands a grounded act (“cite sources,” “don’t guess,” “latest as of today”), but Outside-core
retrieval returns evidence that is stale, partial, or conflicting, and the core model smooths the
mismatch into fluent prose as if it were resolved.
The rest of this section unpacks why these moves follow from the four lenses and the three
lanes.

This philosophical mapping points to a simple discipline: place critique and control where
they belong.
In the simplest terms: evaluation is mostly a Wittgenstein/Lewis question (meaning-in-use
and common ground). Reliability often depends on Outside-core (the deployment layer).
Governance is act-shaping plus auditability: what rules were applied, what evidence was
used, and what the system could see at the time.
Evaluation should not be reduced to fluency. Lewis-style questions are especially useful: does
the system keep the conversational “score” consistent across turns—what is treated as settled,
what is merely assumed, and what the system has committed itself to? Does it preserve those
commitments when asked again later, and does it revise them cleanly when conditions
change (e.g., “given X, not Y”)? Or does it answer each turn as if it were a fresh start, creating

subtle contradictions? Wittgenstein-style questions matter too: does the output fit the game—
its role, norms, stakes, and definition of success?

Reliability often lives in Outside-core. If the system loses context, it may contradict prior
commitments. If the output is forced into a schema, it may look rigorous while remaining
untrue. If retrieval or tools are added, answers can be tied to sources—but now the system
can fail in new ways: stale retrieval, incorrect citations, and brittle tool calls. Once evaluation
and reliability are located, governance can be stated plainly: set rules for which acts the
system may perform (assert, recommend, refuse, escalate), under what evidentiary
conditions, and how each act is logged and auditable.
Governance as act-shaping under audit
Governance becomes more legible when framed as act-shaping under audit. The practical
question is not whether the model “understands,” but under what conditions it is allowed to
assert, when it must ask, what it must cite, and how its outputs can be checked and traced.
In the running example, this means two simple requirements: (1) the answer must be tied to
the retrieved passages, and (2) the system must log which passages were used so the claim
can be checked later.

A Lewisian framing makes the audit target explicit: the evolving common ground—what the
system treated as given, what it added, and what it revised. In a GPT system, that “common
ground” is implemented as a moving context window plus whatever memory, retrieval, and
tool outputs are injected around it.

Auditability is therefore not only about recording the final output. It is about preserving
enough context to explain why an output was locally reasonable inside the system: the
instruction stack, the context the system could see, the evidence it retrieved, and the
constraints that shaped the response.

Minimum audit artifacts typically include (in plain terms):

 Instruction stack snapshots (what rules and instructions were in force for this request:
system/developer/user messages, active policies, and guardrails).

 Context-window snapshots (what the system could “see” when it answered, including
any truncation and any summaries or memory inserts that replaced earlier text).

 Retrieved or tool-produced evidence (what was fetched or generated outside the
model, when it was fetched, and exactly what passages were tied to citations).

 Decoding and constraint configuration (what output formats were forced, what stop
conditions applied, and what sampling settings affected variability).

 Output plus declared act constraints (what the system was required to do: cite sources,
mark uncertainty, ask clarifying questions first, refuse under specific conditions, and
so on).

For systems that maintain “memory” or summarized context, a minimum governance
discipline includes:

 What gets summarized vs retained (and when).
 Who or what is allowed to write to memory (and under what conditions).
 How memory is versioned and reviewed, especially after policy or model updates.

7. Conclusion
A plain-text GPT system is neither a mind nor a simple text engine. It is an end-to-end system
that produces language-like behavior through the interaction of Control, Core, and Outside-
core. Linguistics offers a useful breakdown of what language does; the three-lane view offers
a useful breakdown of where behavior comes from in production. The four-philosophers lens
keeps interpretation disciplined: meaning as use (Wittgenstein), commitments and common
ground (Lewis), competence without assuming comprehension (Dennett), and limits on
claims about experience and world-contact (Nagel). Speech acts make the framework
operational. They explain why the system can sound socially competent, why
anthropomorphic readings are tempting, and where governance controls can be placed to
improve reliability without over claiming what the system is.

Ethics, Disclosure, and Acknowledgements
Ethical Considerations
This paper does not draw on private, sensitive, or personally identifiable data. All examples
are hypothetical, anonymized, or derived from public sources. No formal human-subjects
research was conducted, and no institutional ethics review was required. All citations seek to
conform to academic standards.

The broader ethical implications of the arguments developed herein concern public
misinterpretation, policy design, and stakeholder responsibility in AI deployment. These
implications are intended to provoke critical discussion and inform future regulatory and
design frameworks.
Use of AI Tools
AI language models - most notably OpenAI’s ChatGPT - were used during the writing
process as interlocutors: for brainstorming, structuring sections, and testing rhetorical clarity.
These tools were instrumental in refining transitions, surfacing edge cases, and challenging
internal consistency.

This meta-use aligns with the paper’s themes. Interacting with generative AI during
authorship provided firsthand insight into the very limitations this paper analyzes: fluency
without grounding, responsiveness without perspective, and the ease with which stylistic
coherence can be mistaken for conceptual depth.

Responsibility for all ideas, arguments, and conclusions lies solely with the human author.
Acknowledgments
The author wishes to thank informal readers who provided critical feedback on earlier drafts.
Their questions, challenges, and encouragement materially improved the final manuscript.
Special thanks to those who questioned assumptions, pushed for clearer synthesis, and
reminded the author that philosophy and engineering are not separate disciplines - they are
simply perspectives on design.

No institutional support, funding, or affiliation contributed to this work. All errors and
omissions are the author’s alone.
Disclosure Statement
This work was conducted independently, without institutional affiliation, funding, or
external influence. The views expressed are the author’s alone and do not represent any
current or former employer. No financial or professional conflicts of interest are declared.
License & Attribution
This work is licensed under the Creative Commons Attribution 4.0 International (CC BY
4.0) license. You are free to share, adapt, and build upon this work for any purpose—
including commercial use—so long as proper attribution is given. No additional permissions
are required.

Full license terms: https://creativecommons.org/licenses/by/4.0/

Trademark Notice: The Four Philosophers Framework™ and The 4-Philosophers Framework™ are

unregistered trademarks of Michael Stoyanovich. The CC BY 4.0 license does not apply to
these trademarks. Use of the trademarked names is permitted for scholarly citation or
descriptive reference but may not be used in connection with commercial products, services,
or branding without permission.

To cite this paper:
Stoyanovich, Michael. Where GPT Behavior Comes From: Four philosophers, a linguistics stack, and
a practical map of deployed systems. Version 1.3.1 (December 2025).
https://www.mstoyanovich.com

https://www.mstoyanovich.com/

Version History and Document Status
This is a living document. As generative AI systems and their use evolve, this paper will be
periodically updated to incorporate new empirical findings, theoretical insights, and policy
developments. Major revisions are recorded here to preserve transparency and scholarly
traceability.

Version Date Description

V1.3.1 December
2025

Added a “For product teams” governance callout at the start of Section 6 to
surface practical implications (evidence-binding, anchoring deixis,
freshness/authority checks, instruction/context logging, memory governance);
added a short bridge sentence framing these moves as the applied payoff of the
four lenses and three lanes.

V1.3.0 December
2025

Moved the condensed table and its on-ramp to the end of Section 4; tightened
Section 4 flow; refined title/subtitle to “Where GPT Behavior Comes From.”

V1.2.9 December
2025

Added table “on-ramp” improvements: worked example walkthrough, explicit
Section 4 framing, and “not meant to be memorized” guidance to reduce
cognitive load.

V1.2.8 December
2025

Incorporated critique-driven “misread defenses”: clarified stance (not
ontology), added emergence nuance, clarified speech acts as workflow
categories, added multimodal scope note, and added minimum memory-
governance checklist.

V1.2.7 December
2025

Added Appendix on the linguistics stack (plain language) and added a Word-
native “three lanes” visual to reinforce Control/Core/Outside-core.

V1.2.6 December
2025

Added a running vignette example and threaded it through Sections 4–6 to
anchor the mapping in a concrete, repeatable scenario.

V1.2.5 December
2025

Smoothed transitions and corrected minor terminology (e.g., “machine learning
(ML)”); reduced rhetorical heat; clarified where governance shows up in the
implications.

V1.2.4 December
2025

Incorporated reader feedback: improved skimmability and clarified lane
attribution; minor tone and terminology normalization.

V1.2.3 December
2025

Plain-spoken sweep: tightened prose for governance audiences while
preserving technical accuracy and the three-lane frame.

V1.2.2 December
2025

Added author background caveat as a title footnote to frame the essay as a
practitioner synthesis rather than a disciplinary contribution.

V1.2.1 December
2025

Added policy-reader on-ramp materials: Reader Guide plus plain-language
appendices (technical notes + glossary) to reduce barriers for non-ML
audiences.

V1.2.0 December Added seam failure mode (Control ↔ retrieval conflict) and clarified inference-

2025 time boundary-blurring; strengthened governance framing around common
ground and auditability.

V1.1.2 December
2025

Structural sharpening for skimmability: clearer section headings, explicit “how
to use this” guidance, improved transitions, and table legend/reading
instructions.

V1.0.0 December
2025

Initial practitioner draft: mapped the four philosophers to a linguistics stack and
then to a three-lane GPT system frame (Control / Core / Outside-core).

Appendix A. Full mapping table
The table below provides the full linguistics-to-GPT mapping referenced in the main text.

Linguistics layer
(tags)

CONTROL
(message hierarchy)

CORE
(transformer)

OUTSIDE-core
(runtime + I/O)

Deixis / Indexicals

[W,L]

prompt can pin
“here/now/this/that”
via explicit context (“In
this doc…”, “In
2025…”)

resolves indexicals
only via textual cues
in-window; brittle
when cues are missing

runtime context
injection (time, locale,
tool outputs) can
stabilize reference

Empirical
verification / World-
tethering

[N(LIMIT),W,L,D]

prompts can require
sources, quoting, and
“don’t guess” rules

no inherent truth-
check; can generate
plausible continuations
absent grounding

tools/RAG/browsing
(if present) provide
external checks;
otherwise none

Sociolinguistics /
Register

[W,L]

system/dev tone,
norms; user constraints

learned style/register
priors

decoding settings
affect
variability/verbosity

Conversation /
Interaction

[W,L]

role tags, chat
template, turn
packaging

learned dialogue
patterns (repair-like)

stop sequences;
tool/function protocol;
decoding affects
responsiveness

Discourse / Text
linguistics

[L]

delimiting/quoting/
scope defines
“context”

attention over context
window supports
coherence (within
window)

context mgmt:
truncation, memory
injection,
summarization; KV-
cache/runtime
constraints

Pragmatics (speaker
meaning)

[W,L]

intent cues, priority
rules, constraints

pragmatics-ish
patterns (inconsistent)

policy/safety layers
can override stance;
tool gating

Speech acts
(assert/request/comm
it/refuse/hedge)

[W,L]

explicit act-shaping:
“summarize”, “argue”,
“refuse if…”, “ask
clarifying questions”

learned act-shaped
continuations
(asserting, hedging,
complying) without
truth guarantee

policy
enforcement/refusals;
constrained output
channels
(JSON/schema), tool
calls as “acts”

Semantics
(compositional)

[W,D]

framing (“summarize”
vs “argue”) biases read

contextual reps encode
meaning-like
distinctions; LM head
token distribution

constrained decoding
(JSON/schema/gram
mar), logit bias / stop
tokens as steering

Syntax (structure)

[D]

formatting can make
structure easier/harder
(lists, code blocks, etc.)

structure-sensitive
behavior via
attention/position
(emergent)

constrained decoding
can enforce structure
even if core would
drift

Lexicon
(words/idioms/MWEs
)

domain prompts
“activate” vocabulary
usage

distributed
lexical/idiom patterns
in weights

vocab is discrete
interface the core
predicts

[W,L,D]
Morphology

[L,D]

minimal direct control
role

early-layer regularities
over subwords

tokenizer ≈ subword
segmentation;
detokenizer merges
back

Orthography /
Graphology

[W,L]

“use bullets/title case”
formatting directives

orthographic
conventions learned
statistically

raw text I/O:
punctuation/case/whi
tespace render

Phonology

[—]

NO MAPPING (plain
text)

NO MAPPING (plain
text)

NO MAPPING (plain
text)

Phonetics

[—]

NO MAPPING (plain
text)

NO MAPPING (plain
text)

NO MAPPING (plain
text)

Historical linguistics /
Diachrony

[W,L]

can request “in 17th-
century style” (a
control prompt)

diachronic
facts/patterns may be
present but no intrinsic
change mechanism

retrieval/tools (if used)
can supply dated facts
(outside-core
freshness)

Psycholinguistics /
Neurolinguistics

[D,N(LIMIT)]

NO MAPPING (not a
human
cognitive/brain arch)

NO MAPPING (not a
cognitive/brain
substrate)

NO MAPPING

Appendix B. Technical notes in plain language
This appendix defines the minimum technical vocabulary needed to use the mapping in the
main text. The goal is practical: to clarify what tends to be inside the model versus in
surrounding system components.

 Tokens (what the system actually outputs)
A GPT system generates text one small unit at a time. Those units are called tokens. A
token can be a whole word, part of a word, or punctuation. The model does not see
words directly; it sees token sequences and produces a ranked set of likely next tokens.

 Tokenization (why words sometimes split oddly)
Before text reaches the model, a tokenizer splits it into tokens. This splitting is
optimized for efficient computation, not for linguistic elegance. That is why a single
word may be broken into pieces. Tokenization sits Outside-core: it is part of the system
interface, not the transformer itself.

 Decoding (how the system chooses among plausible continuations)
The model produces many plausible next-token options. Decoding is the procedure
that selects which option becomes the output. More conservative decoding reduces
variability; more permissive decoding increases variability. Decoding choices can
change tone and risk posture without changing the underlying model weights
(Outside-core).

 Context window (why earlier material drops out)
A GPT system has a finite amount of prior text it can attend to at once, often called the
context window. When a conversation or document exceeds that limit, older material
must be truncated or summarized. This is a major source of apparent inconsistency
and drift, and it is primarily an Outside-core constraint.

 Tools, retrieval, and RAG (how systems look things up)
Some deployments connect the model to external sources: search, databases, or
document retrieval. Retrieval-Augmented Generation (RAG) is a common pattern: the
system retrieves passages, inserts them into the context, and then asks the model to
answer using those passages. This can improve factual grounding, but retrieval can fail
(missing, stale, or irrelevant sources). Retrieval is Outside-core.

 Policy and safety layers (why refusals and hedging can change)
Many systems apply policy checks before or after the model generates text. These
checks can block, rewrite, or redirect outputs, and they often shape the system’s stance
(more cautious, more constrained). For governance readers, the key point is that policy
behavior is frequently an Outside-core control surface.

 Constrained outputs (schemas, formats, and must look like this)
Some systems force outputs to follow a format (for example, JSON, a form, or a
tool/function signature). This constrains what speech act is being performed: not just
'answer,' but 'answer in a checkable structure.' These constraints typically live Outside-
core, though they shape how the Core’s token stream is sampled.

 Seam failures (when Control and retrieval conflict)
A recurring failure mode occurs when the system instructs the model to follow strict
constraints (Control), but retrieval provides partial or conflicting evidence. The model
may smooth the conflict into a fluent answer. Mitigations include: forcing citation-
bound answers, requiring clarification when evidence conflicts, and logging retrieved

passages alongside outputs for audit.

Appendix C. Glossary
Term Plain-language definition
Control System and prompt packaging: roles, instructions, templates, and

constraints that define the task and permitted moves.
Core The transformer model: produces a distribution over next tokens

given the current context.
Outside-core The surrounding machinery: tokenization, decoding, context

management, policy enforcement, and optional tools/retrieval.
Token A small unit of text used by the model (word piece, whole word,

punctuation).
Tokenizer Software that splits text into tokens before it reaches the model.
Detokenizer Software that merges tokens back into readable text.
Decoding The procedure that selects which token is emitted from the

model’s ranked possibilities.
Context window The maximum amount of prior text the model can directly attend

to at once.
Truncation Dropping older context when the window is exceeded.
Summarization/memory
injection

Condensing older context and reinserting a shorter version to
preserve continuity.

RAG / retrieval Retrieval augmented generation (RAG). Fetching external
passages and inserting them into context to improve grounding.

Tool call / function call A structured request from the system to an external tool (search,
database, etc.).

Policy layer A rule- or model-based mechanism that can block, rewrite, or
redirect outputs.

Schema / constrained
output

A required structure for the output (e.g., JSON) enforced by the
surrounding system.

Appendix D. The linguistics stack used in this essay
This appendix provides plain-language definitions of the linguistics layers referenced in the
mapping tables. The intent is practical: to clarify what each layer names, and why it matters
when diagnosing behavior in deployed GPT systems.

Scope note: This mapping is written for plain-text deployments. For natively multimodal
systems, the phonology/phonetics “no mapping” rows would need to be revisited, and
additional layers (prosody, visual grounding) become first-class.

 Deixis / indexicals: Words like “this,” “that,” “here,” and “now” that point to context.
Example: “this policy” only makes sense if the referenced policy is specified.

 Discourse: How multiple sentences and paragraphs hang together over time (topic
continuity, references, coherence). Example: pronouns like “it” should keep pointing to
the same thing across a section.

 Pragmatics: What a sentence is doing in context (implications, priorities, what is taken
as given). Example: “If unsure, ask” changes what counts as a good response.

 Speech acts: The basic move being made: asserting, requesting, committing, refusing,
hedging. Example: “Cite sources” changes an answer from an assertion to an evidence-
bound assertion.

 Semantics: The content of what is said - roughly, what a sentence claims. Example: “X
caused Y” differs from “X correlated with Y.”

 Syntax: Sentence structure - how words are arranged to form a well-formed statement.
Example: list structure can make constraints easier to follow.

 Lexicon: Word choice, idioms, and domain vocabulary. Example: “common ground”
vs “shared assumptions” can signal different audiences.

 Morphology: Word parts (prefixes/suffixes) and how words are built. In GPT systems
this loosely relates to subword pieces produced by tokenization.

 Orthography / graphology: Written form: punctuation, casing, headings, spacing, and
formatting. Example: bulleting and headings can change readability and compliance.

 Phonology / phonetics: Sound-based layers of language. For plain-text GPT systems,
these have no direct mapping, except indirectly through spelling patterns in training
data.

In this essay’s mapping, the higher layers (discourse, pragmatics, and speech acts) are most
useful for governance because they describe what an output does in context, not just what it
says. The three-lane view then locates where to intervene: Control shapes permitted moves,
the Core generates candidate text, and Outside-core provides formatting, verification, and
enforcement.

Appendix E: Further Reading
This essay is a practitioner mapping, not a literature review. The sources below are offered as
anchors for readers who want to verify the background claims or go deeper.

1. GPT / LLM system mechanics (Core + Outside-core)

 Transformer foundations (the Core model family)
Vaswani, A., Shazeer, N., Parmar, N., et al. (2017). Attention Is All You Need.
Why it matters: establishes the transformer architecture that underlies modern
LLMs.

 Subword tokenization (why “morphology” only weakly maps to tokens)
Sennrich, R., Haddow, B., & Birch, A. (2016). Neural Machine Translation of
Rare Words with Subword Units.
Why it matters: introduces widely used subword approaches (e.g., BPE) that
shape how text is split and represented.

 Decoding choices (why style, verbosity, and “feel” can change without changing
the model)
Holtzman, A., Buys, J., Du, L., Forbes, M., & Choi, Y. (2019). The Curious Case
of Neural Text Degeneration.
Why it matters: shows how sampling/decoding strategies materially affect
generated text.

 Retrieval-Augmented Generation (world-tethering via external sources)
Lewis, P., Perez, E., Piktus, A., et al. (2020). Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks.
Why it matters: explains how retrieval + generation can improve
factuality/provenance compared to generation alone.

 Plain-language grounding for non-specialists (tokens, language modeling,
context limits)
Jurafsky, D., & Martin, J. H. Speech and Language Processing (draft / online).
Why it matters: a clear, widely used reference for the NLP basics that sit behind
“next-token prediction,” context windows, and core terminology.

 Inference-time optimization (optional, if “KV-cache” or serving costs come up)
Raschka, S. (practitioner explainer). Understanding and Coding the KV Cache in
LLMs from Scratch.
Why it matters: explains a common inference-time optimization that affects
latency/memory, even though it doesn’t change “what the model is.”

2. Philosophical anchors (interpretive constraints)

 Wittgenstein (meaning in use; language-games)
Wittgenstein, L. Philosophical Investigations. (esp. remarks commonly cited
around “meaning as use”)

Why it matters: frames meaning as grounded in use and practice, not as a hidden
mental object.

 Lewis (convention; coordination; common knowledge; scorekeeping)
Lewis, D. Convention: A Philosophical Study.
Lewis, D. “Scorekeeping in a Language Game.”
Why it matters: provides tools for thinking about shared expectations, common
ground, and conversational bookkeeping across turns.

 Dennett (the intentional stance as a pragmatic interpretive tool)
Dennett, D. The Intentional Stance.
Why it matters: explains why “as if” agency talk can be predictive—and why it
becomes a trap when treated as literal ontology.

 Nagel (the boundary on subjective experience claims)
Nagel, T. (1974). “What Is It Like to Be a Bat?”
Why it matters: clarifies why fluent first-person style does not warrant claims
about inner experience.

3. Quick orientation references

 Stanford Encyclopedia of Philosophy (SEP) entries
Entries on Wittgenstein, Lewis, Dennett/intentional stance, and related topics.
Why it matters: concise, authoritative summaries for readers who want a reliable
overview before going to primary texts.

	Disclaimer
	Abstract
	1. Why “Does it understand?” is misleading
	2. Four lenses that limit over-claiming
	3. Three lanes: Control, Core, Outside-core
	4. Mapping linguistics onto GPT systems
	How to read the mapping in the table below
	Running example (policy)

	5. Speech acts as the operational hinge
	6. Implications for evaluation, reliability, and governance
	For product teams: governance moves that actually change outcomes
	Governance as act-shaping under audit

	7. Conclusion
	Ethics, Disclosure, and Acknowledgements
	Ethical Considerations
	Use of AI Tools
	Acknowledgments
	Disclosure Statement
	License & Attribution
	Version History and Document Status

	Appendix A. Full mapping table
	Appendix B. Technical notes in plain language
	Appendix C. Glossary
	Appendix D. The linguistics stack used in this essay
	Appendix E: Further Reading

